
Waves in Random and Complex Media
Vol. 18, No. 2, May 2008, 255–274

Scattering of electromagnetic waves from two-dimensional perfectly
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We present a method giving the bi-static scattering coefficient of two-dimensional (2-D)
perfectly conducting random rough surface illuminated by a plane wave. The theory is
based on Maxwell’s equations written in a nonorthogonal coordinate system. This method
leads to an eigenvalue system. The scattered field is expanded as a linear combination
of eigensolutions satisfying the outgoing wave condition. The boundary conditions al-
low the scattering amplitudes to be determined. The Monte Carlo technique is applied
and the bi-static scattering coefficient is estimated by averaging the scattering amplitudes
over several realizations. The random surface is represented by a Gaussian stochastic pro-
cess. Results are compared to published numerical and experimental data. Comparisons are
conclusive.

1. Introduction

The problem of electromagnetic wave scattering from random surfaces continues to attract re-
search interest because of its wide broad applications in optics, radio wave propagation and remote
sensing. The analysis of rough surfaces with parameters close to the incident light wavelength
requires a rigorous vectorial formalism. Numerous methods based on Monte Carlo simulations
are available for the study of electromagnetic wave scattering from one-dimensional (1-D) and
two-dimensional (2-D) random rough surfaces [1–4].

In previous papers, we have shown that the curvilinear coordinate method is an efficient
and versatile theoretical tool for analysing 1-D rough surfaces [5–7]. The C method is based on
Maxwell’s equations written in a nonorthogonal coordinate system fitted to the structure geometry
[5–10].

In the present paper, for the first time, the curvilinear coordinate method is applied for
analysing 2-D perfectly conducting random rough surfaces. The scattering problem is presented
in Section 2 and the C method is described in Section 3. Section 4 deals with the random scattering
problem. The numerical procedure for the generation of a random surface is reported. The random
surface is represented by a Gaussian stochastic process with a Gaussian roughness spectrum. The
Monte Carlo technique is applied for estimating the averaged bi-static scattering coefficient and
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the incoherent intensity from the results over different realizations.The main aim of this paper
is to present the principle of the C method applied to 2-D perfectly conducting random rough
surfaces and to check our results by comparison with published numerical and experimental data
(Section 5).

2. The field scattered from a rough surface

We consider a rough surface described by equation z = a(x, y), where a(x, y) is a local function
defined over the surface area L × L. The structure is illuminated by a monochromatic plane wave
with wavelength λ. The incident wave vector �ki is defined by the zenith angle θi and the azimuth
angle ϕi

�ki = αi �ux + βi �uy − γi �uz (1)

with

αi = k sin θi cos ϕi ; βi = k sin θi sin ϕi ; γi = k cos θi (2)

and

k = 2π

λ
(3)

Both fundamental cases of horizontal and vertical polarizations are considered. For horizontal
(or E//) polarization, the electric field vector is parallel to the Oxy plane and for vertical (or H//)
polarization, this is the case for the magnetic field vector (4). The time-dependence factor varies
as exp(jωt), where ω is the angular frequency. Hereafter, any vector function is represented by its
associated complex vector function and the time factor is suppressed. Z is the intrinsic impedance
of free space and the symbol ∧ designates the vector product.

�E(h)
i (x, y, z)

Z �H (v)
i (x, y, z)

}
= �Vi exp(−j �ki�r) and Z �Hi =

�ki

k
∧ �Ei (4)

with
�Vi = − sin ϕi �ux + cos ϕi �uy (5)

and

�r = x �ux + y �uy + z �uz (6)

�ux, �uy and �uz are the unit vectors of the Cartesian coordinate system (x, y, z).
Without any deformation, the total field is the sum of the incident field ( �Ei ; �Hi) and the

specularly reflected field ( �Esr ; �Hsr ) with

�E(h)
sr (x, y, z)

Z �H (v)
sr (x, y, z)

}
= ρ �Vi exp(−j �ksr�r) and Z �Hsr =

�ksr

k
∧ �Esr (7)
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and

�ksr = αi �ux + βi �uy + γi �uz (8)

ρ is the Fresnel reflection coefficient with ρ = −1 and ρ = 1. For a locally deformed
plane, we consider, in addition to the incident and reflected plane waves, a scattered field
�E(a)

d (x, y, z). The problem consists in working out the h-polarized component and the v-polarized
component:

�E(a)
d (x, y, z) = �E(aa)

d (x, y, z) + �E(ba)
d (x, y, z)

Z �H (a)
d (x, y, z) = Z �H (aa)

d (x, y, z) + Z �H (ba)
d (x, y, z)

(9)

Hereafter, the upper script (a) denotes the incident plane wave polarization and (b), the scattered
wave polarization.

Outside the modulated zone, the scattered field �E(a)
d (x, y, z) can be represented by a superpo-

sition of a continuous spectrum of outgoing plane waves [11, 12], the so-called Rayleigh integral.
Above the highest point of the surface, the h-polarized component of scattered field is defined as
follows

For z > max(a(x, y)), ∀x, y,

�E(ha)
d (x, y, z) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
R̂(ha)(α, β) �V (α, β) exp(−j �kd (α, β)�r) dα dβ (10)

Z �H (ha)
d (x, y, z) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
R̂(ha)(α, β)

( �kd (α, β)

k
∧ �V (α, β)

)

× exp(−j �kd (α, β)�r) dα dβ (11)

with

�kd (α, β) = α�ux + β �uy + γ �uz; Im(γ ) ≤ 0 (12)

and

�V (α, β) = − β√
α2 + β2

�ux + α√
α2 + β2

�uy (13)

When α2 + β2 > k2, γ (α, β) is a pure imaginary and the corresponding waves are evanescent
waves. Otherwise, γ is real and the propagation vector �kd of the propagating wave is defined by
the zenith angle θ and the azimuth angle ϕ.




α = k sin θ cos ϕ

β = k sin θ sin ϕ

γ (α, β) =
√

k2 − α2 − β2 = k cos θ

(14)



258 K. Aı̈t Braham et al.

In the far-field zone, the Rayleigh expansion (10–11) is reduced to the only contribution of the
propagating waves. The method of stationary phase leads to the asymptotic field [13, 14] at the
point M(r, θ, ϕ):

�E(ha)
dfar(r, θ, ϕ) = −R̂(ha)(k sin θ cos ϕ ; k sin θ sin ϕ)

cos θ
exp(−jkr)

λr
exp

(
−j

π

2

)
�uϕ (15)

Z �H (ha)
dfar (r, θ, ϕ) = R̂(ha)(k sin θ cos ϕ ; k sin θ sin ϕ)

cos θ
exp(−jkr)

λr
exp

(
−j

π

2

)
�uθ (16)

Substituting �E(ha) by Z �H (va) and Z �H (ha) by − �E(va) in Equations (10), (11), (15) and (16) we
obtain the v-polarized components of magnetic and electric field vectors. For an incident wave
in (a) polarization and a scattered wave in (b) polarization, the normalized bistatic scattering
coefficient σ (ba) (θ, ϕ) is defined as follows

σ (ba)(θ, ϕ) = 1

P
(a)
i

dP
(ba)
s

d�
=

∣∣R̂(ba)(k sin θ cos ϕ ; k sin θ sin ϕ) cos θ
∣∣2

λ2L2 cos θi

(17)

dP
(ba)
s

d�
is the power scattered per unit solid angle d� = sin θ dθ dϕ with

dP(ba)
s = 1

2
Re

[(
�E(ba)

dfar ∧ �H (ba)∗
df ar

)
dS �ur

]
(18)

The symbol * designates the complex conjugate. dS is the element surface with dS = r2d�. The

unit vectors �ur , �uθ and �uϕ are drawn in the direction of increasing r , θ and ϕ such as to constitute

a right-hand base system. P
(a)
i is the flux of incident power through the modulated region:

P
(a)
i = 1

2

∫ +L/2

−L/2

∫ +L/2

−L/2
Re

[(
�E(a)

i ∧ �H (a)∗
i

)
dxdy �uz

]
(19)

The normalised bi-static scattering coefficients fulfil the power balance criterion (20) [6, 14, 15].

P (a)
s = P

(a)
si (20)

with

P (a)
s =

∫ θ=+π/2

θ=−π/2

∫ ϕ=π

ϕ=0
(σ (aa)(θ, ϕ) + σ (ba)(θ, ϕ)) dθdϕ (21)

P
(a)
si = −2ρ(a)

L2
Re

(
R̂(aa)(k sin θi cos ϕi ; k sin θi sin ϕi)

)
(22)
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P
(a)
s is the ratio between the total scattered power and the incident power in the polarization (a).

P
(a)
si represents the electromagnetic coupling between the incident, reflected and scattered waves

divided by the incident power [14]. In subsection 5.2, the method is numerically investigated in
the far-field zone by means of convergence on the power balance criterion.

3. Analysis with the curvilinear coordinate method

3.1. Coordinate system – covariant components of field

The scattered field cannot be expressed by the Rayleigh integral in the modulated zone if the
perturbation amplitude is too large [11]. We can obtain an expression of fields that is valid over
the surface by solving Maxwell’s equations in the translation coordinate system. This system is
obtained from the Cartesian system (x, y, z) [8, 10]




x ′ = x

y ′ = y

z′ = z − a(x, y)
(23)

In this new coordinate system, the height function z = a(x, y) coincides with the coordinate
surface z′ = 0 [8] and the change from Cartesian components (Kx ; Ky ; Kz) of vector �K to
covariant components (Kx ′ ; Ky ′ ; Kz′) is given by [8, 10, 16]




Kx ′ (x ′; y ′; z′) = Kx(x; y; z) + ∂a(x, y)

∂x
Kz(x; y; z)

Ky ′ (x ′; y ′; z′) = Ky(x; y; z) + ∂a(x, y)

∂y
Kz(x; y; z)

Kz′ (x ′; y ′; z′) = Kz(x; y; z)

(24)

The covariant component Kz′ is simply the vertical component Kz. Moreover, the covariant
components Kx ′ and Ky ′ are parallel to surface coordinate z′ = z0 and in particular, parallel to
interface z′ = 0.

In a source-free medium, it can be shown from the time harmonic Maxwell equations and the
constitutive relations expressed in the translation system that the longitudinal components Ez′

and ZHz′ obey to the same propagation Equation (25) [10]

− ∂

∂z′

[
gx ′z′ ∂ ψ

∂x ′ + ∂ gx ′z′
ψ

∂x ′

]
− ∂

∂z′

[
gy ′z′ ∂ ψ

∂y ′ + ∂ gy ′z′
ψ

∂y ′

]
+ jkgz′z′ ∂ψ ′

∂z′

= ∂2ψ

∂x ′2 + ∂2ψ

∂y ′2 + k2ψ (25)

with

ψ ′ = j

k

∂ψ

∂z′ (26)
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and ψ(x ′, y ′, z′) = Ez′(x ′, y ′, z′) or ZHz′ (x ′, y ′, z′). gx ′z′
, gy ′z′

and gz′z′
are elements of metric

tensor which depend on the derivatives of function a(x ′, y ′) with respect to x ′ and y ′ [10]

gx ′z′ = − ∂a

∂x ′

gy ′z′ = − ∂a

∂y ′

gz′z′ = 1 +
(

∂a

∂x ′

)2

+
(

∂a

∂y ′

)2

(27)

We obtain expressions of components E′
x , E′

y , H ′
x and H ′

y in terms of longitudinal components
Ez′ and ZHz′ only [10]

∂2Ex ′

∂z′2 + k2Ex ′ = ∂2Ez′

∂x ′∂z′ − k2gx ′z′
Ez′ − jkgy ′z′ ∂ZHz′

∂z′ − jk
∂ZHz′

∂y ′ (28)

∂2Ey ′

∂z′2 + k2Ey ′ = ∂2Ez′

∂y ′∂z′ − k2gy ′z′
Ez′ + jkgx ′z′ ∂ZHz′

∂z′ + jk
∂ZHz′

∂x ′ (29)

∂2ZHx ′

∂z′2 + k2ZHx ′ = ∂2ZHz′

∂x ′∂z′ − k2gx ′z′
ZHz′ + jkgy ′z′ ∂Ez′

∂z′ + jk
∂Ez′

∂y ′ (30)

∂2ZHy ′

∂z′2 + k2ZHy ′ = ∂2ZHz′

∂y ′∂z′ − k2gy ′z′
ZHz′ − jkgx ′z′ ∂Ez′

∂z′ − jk
∂Ez′

∂x ′ (31)

The covariant components Ex ′ and Ey ′ are parallel to the perfectly conducting inter-
face. Consequently, we have Ex ′ = Ey ′ = 0 at z′ = 0 (i.e. z = a(x, y)). In the next subsec-
tion, we propose a procedure for solving the propagation Equation (25)-(26) in the spec-
tral domain [7]. The Oz-components are expanded as a linear combination of eigensolu-
tions satisfying the outgoing wave condition. We deduce from Equations (28) to (31) the
h-polarised components of electric and magnetic fields �E(ha)

d and �H (ha)
d by taking Ez′ = 0 and

the v-polarized components �E(va)
d and �H (va)

d by taking Hz′ = 0. Finally, both h-polarized and
v-polarized amplitudes of eigensolutions are found by solving the boundary conditions.

3.2. Eigenvalues system and elementary wave functions

After a Fourier transform (TF) with respect to x ′ and y ′, Equations (25) and (26) take the following
form

∂

∂z′
[
jα( ĝx ′z′ ∗ ψ̂) + j ĝx ′z′ ∗ (α ψ̂) + jβ( ĝy ′z′ ∗ ψ̂) + j ĝy ′z′ ∗ (β ψ̂)

]

+ jk ĝz′z′ ∗ ∂ψ̂ ′

∂z′ = γ 2ψ̂ (32)

j

k

∂ψ̂

∂z′ = ψ̂ ′ (33)
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K̂ ∗ L̂ is the convolution product of two Fourier Transforms K̂(α, β, z′) and L̂(α, β). In a second
stage, convolution products are approximated as follows

(K̂ ∗ L̂) (α, β, z′) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
K̂(α′, β ′, z′) L̂(α − α′, β − β ′) dα′ dβ ′

≈ �α2

4π2

∑
p

∑
q

K̂(αp, βq, z
′) L̂(α − αp, β − βq) (34)

where

αp = k sin θi cos ϕi + p�α, βq = k sin θi sin ϕi + q�α (35)

�α is the spectral resolution. As �α decreases, approximations (34) become more accurate.
Finally, from substituting Equation (34) into Equations (32) to (33) and applying the point
matching method at discrete values (αs ; βt ), we obtain two sets of coupled first-order differential
equations relating coefficients ψ̂(αs, βt , z

′) and ψ̂ ′(αs, βt , z
′) to each other.

j

k

∂

∂z′

(∑
p,q

(
αs

k
ĝx ′z′

s−p,t−q + ĝx ′z′
s−p,t−q

αp

k
+ βt

k
ĝ

y ′z′
s−p,t−q + ĝ

y ′z′
s−p,t−q

βq

k

)
ψ̂(αp, βq, z

′)

)

+ j

k

∂

∂z′

(∑
p,q

ĝz′z′
s−p,t−q ψ̂ ′(αp, βq, z

′)

)
= γ 2

st

k2
ψ̂(αs, βt , z

′) (36)

j

k

∂ψ̂(αs, βt , z
′)

∂z′ = ψ̂ ′(αs, βt , z
′) (37)

with

ĝx ′z′
p,q = �α2

4π2
ĝx ′z′

(αp, βq) (38)

ĝy ′z′
p,q = �α2

4π2
ĝy ′z′

(αp, βq) (39)

ĝz′z′
p,q = δpq +

∑
u,v

ĝx ′z′
p−u,q−vĝ

x ′z′
u,v +

∑
u,v

ĝ
y ′z′
p−u,q−vĝ

y ′z′
u,v (40)

where δpq denotes the Kronecker symbol. Equations (36) and (37) can be written in matrix form

j

k
Ll

∂

∂z′

( �ψ
�ψ ′

)
= Lr

( �ψ
�ψ ′

)
(41)

Ll and Lr are square matrices specified by the left-hand side and the right-hand side of (36) and
(37). With a Mth-order truncated approximation, the matrices Ll and Lr are 2Ms-dimensional
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ones with Ms = (2M + 1)2. The upper vector �ψ and the lower vector �ψ ′ have components
ψ̂(αs, βt , z

′) and ψ̂ ′(αs, βt , z
′) with −M ≤ s, t ≤ +M . The elementary solutions of (41) are

defined as follows

( �ψmn

�ψ ′
mn

)
=

( �φmn

�φ′
mn

)
exp (−jkrmn z′) (42)

with

rmnLl

( �φmn

�φ′
mn

)
= Lr

( �φmn

�φ′
mn

)
(43)

�φmn and �φ′
mn represent the upper eigenvector and the lower eigenvector associated with the

eigenvalue rmn. We write φmn(αs,βt ) and φ′
mn(αs,βt ) the components of vectors �φmn and �φ′

mn,
respectively. The eigenvalue problem (43) gives 2Ms eigensolutions. According to the sampling
theorem [7, 17, 18], the elementary wave functions ψ̂mn(α, β, z′) and ψ̂ ′

mn(α, β, z′) can be con-
structed from samples φmn(αs,βt ) and φ′

mn(αs,βt ) by the following interpolations

ψ̂ ′
mn(α, β, z′) = exp(−jkrmnz

′)

×
+M∑

s=−M

+M∑
t=−M

φ′
mn(αs,βt )sinc

(
π

�α
(α − αs)

)
sinc

(
π

�α
(β − βt )

)
(44)

ψ̂ ′
mn(α, β, z′) = exp(−jkrmnz

′)

×
+M∑

s=−M

+M∑
t=−M

φ′
mn(αs,βt )sinc

(
π

�α
(α − αs)

)
sinc

(
π

�α
(β − βt )

)
(45)

Function ψ̂mn(α, β, z′) represents an outgoing wave propagating with no attenuation if
Re(rmn) > 0 and Im(rmn) = 0. For an evanescent wave, Im(rmn) < 0. It is observed numerically
that among the 2Ms eigenfunctions (44), Ms of them correspond to outgoing waves ((m, n) ∈ Ds)
and as many to incoming waves. The numerically computed eigenvalues and eigenvectors depend
on the truncation order M . Depending on whether M is a sufficiently large number, we note nu-
merically that the real eigenvalues rmn are on the interval [−1;+1] and correspond to the cosine
of scattering angles with rmn = cos θmn [8]. We can write

r2
mn = γ 2(αm, βn)

k2
= 1 −

(
αm

k

)2

−
(

βn

k

)2

= cos2(θmn) (46)

Finally, the Fourier transform of Oz-component is defined as a linear combination of Ms

eigensolutions (44) satisfying the outgoing wave condition.

ψ̂d (α, β, z′) =
∑

(m,n)∈Ds

Amnψ̂mn(α, β, z′) (47)

ψ̂ ′
d (α, β, z′) =

∑
(m,n)∈Ds

Amnψ̂
′
mn(α, β, z′) (48)
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Substituting Ez′ = 0 into Equations (28) to (31) and applying the same procedure in the spectral
domain, we obtain the Fourier transforms of h-polarised transverse components.

ψ̂
(ha)
dT (α, β, z′) =

∑
(m,n)∈Ds

A(ha)
mn ψ̂

(ha)
T ,mn(α, β) exp(−jkrmnz

′) (49)

with

ψ̂
(ha)
dT (α, β, z′) =




Ê
(ha)
dx ′ (α, β)

Ê
(ha)
dy ′ (α, β)

ZĤ
(ha)
dx ′ (α, β)

ZĤ
(ha)
dy ′ (α, β)


 and ψ̂

(ha)
T ,mn(α, β) =




Ê
(ha)
x ′,mn(α, β)

Ê
(ha)
y ′,mn(α, β)

ZĤ
(ha)
x ′,mn(α, β)

ZĤ
(ha)
y ′,mn(α, β)


 (50)

According to the sampling theorem [17, 18], we write

ψ̂
(ha)
T ,mn(α, β) =

+M∑
s=−M

+M∑
t=−M

ψ̂
(ha)
T ,mn(αs,βt )sinc

(
π

�α
(α − αs)

)
sinc

(
π

�α
(β − βt )

)
(51)

where

Ê
(ha)
x ′,mn(αs,βt ) = −k2

+M∑
p=−M

+M∑
q=−M

ĝ
y ′z′
s−p,t−qφ

′
mn(αp, βq ) − kβtφmn(αs, βt ) (52)

Ê
(ha)
y ′,mn(αs,βt ) = k2

+M∑
p=−M

+M∑
q=−M

ĝx ′z′
s−p,t−qφ

′
mn(αp, βq) + kαsφmn(αs, βt ) (53)

ZĤ
(ha)
x ′,mn(αs,βt ) = −k2

+M∑
p=−M

+M∑
q=−M

ĝx ′z′
s−p,t−qφmn(αp, βq ) − kαsφ

′
mn(αs, βt ) (54)

ZĤ
(ha)
y ′,mn(αs,βt ) = −k2

+M∑
p=−M

+M∑
q=−M

ĝ
y ′z′
s−p,t−qφmn(αp, βq ) − kβtφ

′
mn(αs, βt ) (55)

Taking Hz′ = 0 and substituting �E(ha) by Z �H (va) and Z �H (ha) by − �E(va) in (49) to (55), we obtain
the v- polarized components of magnetic and electric-fields.

3.3. Boundary conditions and Scattering amplitudes

The scattering amplitudes A
(ha)
mn and A

(va)
mn are found by solving the boundary conditions. The

electric field components Ex ′ and Ey ′ are parallel to surfaces z′ = z0 and appear in the boundary
conditions at z′ = 0, i.e. at z = a(x, y). So, for an incident wave in (a) polarization, we can
write

E
(ha)
dx ′ (x ′, y ′, z′) + E

(va)
dx ′ (x ′, y ′, z′) = − (

E
(a)
ix ′ (x ′, y ′, z′) + ρ(a)E

(a)
rs,x ′ (x ′, y ′, z′)

)
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E
(ha)
dy ′ (x ′, y ′, z′) + E

(va)
dy ′ (x ′, y ′, z′) = − (

E
(a)
iy ′ (x ′, y ′, z′) + ρ(a)E

(a)
rs,y ′ (x ′, y ′, z′)

)
(56)

After a Fourier transform, the point-matching method is applied to (56) at discrete values
(αs ; βt ). According to Equations (4) to (7), (24), (49) and (56), a 2Ms-dimensional matrix system
is obtained, the inversion of which leads to scattering amplitudes A

(ha)
mn and A

(va)
mn .

The bi-static scattering coefficients σ (ba)(θ, ϕ) are defined from the scattering amplitudes
R̂(ba)(α, β) (17). Outside the modulated zone, the Fourier-Rayleigh integrals are valid. So, for
a scattered field in (h) polarisation, according to Equations (10), (12), (13), (24) and (49), the
following continuity relations on transverse electric components can be written:

At z0 > max(a(x, y)), ∀x, y,

E
(ha)
dx ′ (x, y, z′

0) = − 1

4π2

∫ +∞

−∞

∫ +∞

−∞

β R̂(ha)(α, β)√
α2 + β2

exp (−jαx − jβy − jγ z0) dα dβ

E
(ha)
dy ′ (x, y, z′

0) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞

α R̂(ha)(α, β)√
α2 + β2

exp (−jαx − jβy − jγ z0) dα dβ (57)

with z′
0 = z0 − a(x, y). Function R̂(ha)(α, β) is obtained by solving the continuity relations (57)

in the spectral domain. In final, we find

R̂(ha)(α, β) =
(

α√
α2 + β2

TF
[
E

(ha)
dy ′ (x, y, z′

0)
]

− β√
α2 + β2

TF
[
E

(ha)
dx ′ (x, y, z′

0)
])

exp(jγ z0) (58)

For a scattered field in (v) polarisation, the scattering amplitudes R̂(va)(α, β) are derived from the
continuity relations of transverse magnetic field components.

4. Scattering by random rough surfaces

4.1. Generation of the random surface

First, we consider an isotropic random process g(x, y) with a Gaussian height probability distri-
bution characterized by the root-mean-square height h. The average value of the Gaussian variate
g(x, y) is zero. The correlation function used is also Gaussian. lc is the correlation radius. The
realizations are obtained by a Gaussian filter applied to random uncorrelated numbers charac-
terized by a normalized Gaussian distribution [15, 19]. In the second stage, the local function
a(x, y) is defined

a(x, y) = g(x, y)V (x)V (y) (59)

with

V (x) = 0 if |x| > +L

2
(60a)
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V (x) = 1 if − L

2
+ lt < x < +L

2
− lt (60b)

V (x) = x + L/2

lt
− 1

2π
sin

(
2π

lt

(
x + L

2

))
if − L

2
< x < −L

2
+ lt (60c)

V (x) = L/2 − x

lt
− 1

2π
sin

(
2π

lt

(
L

2
− x

))
if

L

2
− lt < x <

L

2
(60d)

V (x) is a step function having continuous first and second derivatives and equal to zero
outside the interval [−L/2; +L/2]. The rough surface z = a(x, y) has a finite modulation area
L × L with transition zones of width lt [7, 15]. It is worth noting that the profile g(x, y) and the
distribution of height are unchanged when −L

2 + lt < x, y < +L
2 − lt .

4.2. Coherent intensity and incoherent intensity

The averaged bi-static coefficient is defined as follows [7]

〈σ (ba)(θ, ϕ)〉 = I (ba)
c (θ, ϕ) + I

(ba)
f (θ, ϕ)

= 1

λ2L2

cos2 θ

cos θi

〈|R̂(ba)(k sin θ cos ϕ ; k sin θ sin ϕ) cos θ |2〉 (61)

where the angular bracket 〈〉 stand for ensemble averaging. I (ba)
c (θ, ϕ) is the coherent intensity

and I
(ba)

f (θ, ϕ), the incoherent intensity.

I (ba)
c (θ, ϕ) = 1

λ2L2

cos2 θ

cos θi

∣∣〈R̂(ba)(k sin θ cos ϕ ; k sin θ sin ϕ)
〉∣∣2 (62)

Some authors prefer to use the normalized incoherent radar cross-section (4π cos θiI
(ba)

f (θ, ϕ)).
The Monte Carlo technique is applied to estimate the averaged bi-static coefficient and the
incoherent intensity from the results over NR different realizations [7].

5. Results

5.1. Truncation order and size of matrices

In the spectral domain, the Mth-order truncation removes the highest spatial frequencies of the
field components. As a consequence, the part of the electromagnetic field consisting of higher
order evanescent eigen waves is also removed. So, integration variables α and β vary within
interval [−αmax; +αmax] with

αmax = αM = M�α (63)

The proportion of evanescent waves is larger when αmax increases, so that the coupling phenomena
are better described. We can note that in the convolution products of Equations (36) and (52)–(54),
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integration variables α and β for the Fourier transforms of metric tensor elements vary within the
interval [−2αmax; +2αmax].

The C method requires solving a 2Ms-dimensional eigenvalue system and inverting a 2Ms-
dimensional matrix that leads to the scattering amplitudes. The C method has been imple-
mented in Matlab language on several Xeon-Pentium-3.4 GHz- bi-processor PC with 4 GB
RAM.

5.2. Results for a single surface

We consider a single surface with an area of L2 = 64λ2 and illuminated under incidence angles
θi = 30◦ and ϕi = 0◦. The Gaussian random surface has a correlation length lc = λ. If the
method is numerically stable, the accuracy on the power balance and the results increase with
increasing the truncation order M . To illustrate this idea, two measures of error are defined as
follows

�P (a) = ∣∣1 − P
(a)
si /P (a)

s

∣∣ (64)

�F (ba) =
∫ +π/2
−π/2

∣∣∣∣F (ba)

ref
(θ, ϕ) − F

(ba)
(θ, ϕ)

∣∣∣∣ dθ∫ +π/2
−π/2 F

(ba)

ref
(θ, ϕ) dθ

(65)

�P (a) defines the error on the power balance for the incident polarization (a) and �F (ba), a
relative error between the energetic magnitude under study F

(ba)
(θ ) and the reference energetic

magnitude F
(ba)

ref
(θ ) obtained from experiment data or another exact method. F

(ba)
represents either

σ
(ba)

or 〈σ (ba)〉 obtained in the plane of incidence.
Table 1 lists the errors �P (a) for different pairs (h; M) in both polarizations and shows that

for a given rms height, the errors decrease with increasing the truncation order. We can also
point out that the more h increases, the slower the power balance converges (The surfaces under
consideration are obtained by a proportional transformation). This means that as the rms height
increases, more and more evanescent waves must be taken into consideration to describe the
scattering phenomenon. If we consider the h-polarized plane wave incidence and a truncation
order M of 12, the maximum value that the rms height can reach is about 0.45λ in order to satisfy
the power balance to within 1%. With M = 24, the maximum value is about 0.75λ. If we con-
sider the v-polarized plane wave incidence, the corresponding values are about 0.35λ and 0.8λ,
respectively. Table 2 lists the higher spatial frequency, the number of unknowns and the CPU time
for several truncation orders. With M = 12 and M = 24, the method gives 1250 and 4802 un-
knowns amplitudes, respectively. As shown in Table 2, the computation time varies approximately
as M3

s .
It’s important to show that an electromagnetic model checks the power balance. Nevertheless,

the power balance criterion is not sufficient to ensure the validity of any numerical method. So, it’s
important to study the convergence of the C-method results with respect to the truncation order
[5] and to verify the theory by comparison with other exact methods and experimental data. Figure
1 shows the normalised bi-static scattering coefficient σ (vh) in the plane of incidence for various
truncation order values. The rms height is h = 0.4 wavelength. The convergence on results is
ensured for M ≥ 16. Relative error �σ

(vh)
(θ ) between σ

(vh)
(θ,M = 16) and σ

(vh)
ref (θ,M = 28) is

equal to 5%. With M = 16, the error on power balance is weak, the accuracy on far-field results
is good and the computation time is reasonable (12 minutes). Figure 2 shows the normalized
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Table 1. Error �P on the power balance versus truncation order and rms height. The surfaces
under consideration are obtained by a proportional transformation. Rough-surface parameters: lc = λ,
lt = λ/2, L = 8λ; incident angles: θi = 30◦ and ϕi = 0◦; Spectral resolution: �α = k / 8.

M / h Error 0.2 λ 0.4 λ 0.6 λ 0.8 λ 1.0 λ

12 �P(h) 1.0 × 10−4 5.0 × 10−3 0.14 2.2 6310
�P(v) 4.0 × 10−4 1.6 × 10−2 4.0 × 10−2 2.6 1585

16 �P(h) 1.3 × 10−4 1.3 × 10−3 6.3 × 10−3 0.05 63
�P(v) 4.0 × 10−4 2.5 × 10−3 3.2 × 10−3 0.1 40

20 �P(h) 7.9 × 10−6 3.2 × 10−4 3.2 × 10−3 2.5 × 10−2 4.0
�P(v) 3.2 × 10−6 4.0 × 10−4 4.0 × 10−3 1.3 × 10−2 1.6

24 �P(h) 1.6 × 10−6 1.0 × 10−4 1.9 × 10−3 1.6 × 10−2 0.32
�P(v) 1.6 × 10−7 5.0 × 10−5 7.9 × 10−4 1.0 × 10−2 0.25

28 �P(h) 1.0 × 10−7 2.0 × 10−5 4.0 × 10−4 6.3 × 10−3 1 × 10−2

�P(v) 7.9 × 10−8 2.0 × 10−5 2.0 × 10−4 4 × 10−3 2 × 10−2

bi-static scattering coefficient σ (vh) with a rms height h = 0.8 wavelength. The convergence is
ensured if the truncation order is larger than 24. Relative error �σ

(vh)
(θ ) between σ

(vh)
(θ,M =

24) and σ
(vh)

ref (θ,M = 28) is equal to 9%. With M = 24, the CPU time becomes important
(135 minutes).

In the next section, we present some results obtained by the C method for perfectly conducting
surfaces illuminated by an incident plane wave and we check their validity against the scattering
patterns given by methods based on solutions of surface integral equations [20, 21] and given by
experiments [22].

5.3. Comparison with exact numerical simulations and experimental data

We consider random rough surfaces with an area of L2 = 64λ2 illuminated under incidence angles
θi = 10◦ and ϕi = 0◦. The rms height is h = 0.2 wavelength with a correlation radius lc = 0.6
wavelength. Figure 3 shows the averaged bi-static coefficient in the plane of incidence with a (h)-
polarized incident plane wave. The co-polarized component < σ (hh) > and the cross-polarized
component 〈σ (vh)〉 are performed over NR = 780 realizations. In Figure 3, the Monte-Carlo
simulation results given by the SMFSIA/CAG method (Sparse-Matrix Flat-Surface Iterative
Approach with CAnonical Grid) are also plotted [20]. The authors in [20] have used surfaces
with an area of 256 square wavelengths illuminated by a tapered wave [23]. The ensemble
averaging is performed over 280 realizations that are different from 780 realizations used for
our simulation. The comparison is satisfactory. Relative error �σ (hh) is equal to 10% and �σ (vh)

Table 2. System size, higher spatial frequency and CPU
time versus truncation order. The parameters are those of
Table 1.

M 2Ms = 2 (2M + 1)2 2αmax Speed

12 1250 3k 130 sec
16 2178 4k 12 min
20 3362 5k 45 min
24 4802 6k 2 h 15 min
28 6498 7k 5 h 40 min
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Figure 1. Bi-static scattering coefficient σ (hv) in the plane of incidence for one realization with h = 0.4λ.
The parameters are those of Table 1.

is equal to 7% (The reference scattered pattern is given by the SMFSIA/CAG method). The
cell areas, the illumination laws and the realizations used for the two theories are different and
explain the differences observed on results. For our Monte-Carlo simulation results, the truncation
order is fixed at 18. Figures 4 and 5 give the normalized histograms of errors �P (h) and �P (v),
respectively. These histograms show that the error is smaller than 10−3 for eight realizations in
10, and the error is smaller than 1% for all the realizations.
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Figure 2. Bi-static scattering coefficient σ (hv) in the plane of incidence for one realization with h = 0.8λ.
The parameters are those of Table 1.The surfaces under consideration in Figures 1 and 2 are obtained by a
proportional transformation.
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Figure 3. Comparison between the SMFSIA/CAG method and the C method: Averaged bi-static scattering
coefficient in the plane of incidence, (h) incidence. Rough-surface parameters h = 0.2λ, lc = 0.6λ, lt = lc/2,
L = 8λ; incident angles θi = 10◦ and ϕi = 0◦; Spectral resolution �α = k/8. Truncation order M = 18;
Number of realizations NR = 780. Results of the SMFSIA/CAG method are taken in [20].

In Figure 6, the averaged bi-static coefficient is plotted in the plane incidence for the cross-
polarized incoherent intensities (4π cos θiI

(vh)
f and 4π cos θiI

(hv)
f ). We consider random rough

surfaces with an area of L2 = 64λ2 illuminated under incidence θi = 40◦ and ϕi = 0◦. The rms
height is h = 0.5 wavelength with a correlation radius lc = 1.41 wavelength. Each elementary
cell dimensions are about 32 square correlation lengths. The averaged bi-static coefficients are
performed over NR = 300 realizations. With M = 18, the error on the power balance is smaller
than 1% for all the realizations. In Figure 6, the Monte-Carlo simulation results given by the
FB-NSA method (Forward-Backward/Novel Spectral Acceleration method) are also plotted [21].
The authors in [21] have used surfaces with an area of 128 × 32 square wavelengths illuminated
by a tapered wave. The ensemble averaging is performed over 150 realizations. Although the
elementary cell area is reduced to 32l2

c , comparison is satisfactory.
Figure 7 shows the averaged bi-static coefficients in the plane of incidence for Monte Carlo

simulations and millimeter-wave experiments under v-polarized incident waves [22]. The rms
height is h = 1 wavelength with a correlation radius lc = 1.41 wavelength. For our simulations,
the incident plane wave is characterized by the zenith angle θi = 20◦ and the azimuth angle ϕi

= 0◦. Elementary cells present an area of 64 square wavelengths. We generate 300 elementary
surfaces and for each realization, we use a truncation order that leads to an error on the power
balance smaller than 5%. With M = 21, the power balance criterion is verified on 236 realizations.
Among the remaining 64 realizations, the truncation order is fixed at 24 and the criterion is verified
on 48 realizations. Among the remaining 16 realizations, the truncation order is fixed at 28 and
the criterion is only verified for 13 realizations. The curves in Figure 8 are performed over these
297 realizations. Although the elementary cell area is reduced to 32l2

c , the comparison with
experimental data is satisfactory. Relative error �σ (vv) is equal to 13% and �σ (hv) is equal to
12% (The reference scattered patterns are given by experiment data). The backscattering peaks
coincide well enough.
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Figure 4. Histogram of errors �P (h). The parameters are those of Figure 3.

In this section, we have presented some results obtained by the C method and we check
their validity against the scattering patterns given by numerical methods based on solutions of
surface integral equations and by experimental data. For a monochromatic plane wave incidence,
edge effects can appear. Nevertheless, we use the step function defined by Equation (60) and
the comparisons are conclusive in both fundamental polarizations for a relatively wide range of
incidence angles (θi ≤ 40◦). The surfaces under study present relatively large slopes (

√
2h/lc ≤

1 and 0.5 ≤ lc ≤ √
2) for which the predictions of the standard analytic methods (Kirchhoff

Figure 5. Histogram of errors �P (v). The parameters are those of Figure 3.
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Figure 6. Comparison between the FBNSA method and the C method: Normalized incoherent radar cross-
section in the plane of incidence for both cross-polarizations. Rough-surface parameters h = 0.5λ, lc = √

2λ,
lt = λ/2, L = 8λ; incident angles θi = 40◦ and ϕi = 0◦; Spectral resolution �α = k/8. Truncation order
M = 18; Number of realizations NR = 300. Results of the FBNSA method are taken in [21].
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Figure 7. Monte-Carlo simulation comparison of the C method and the experimental data: Averaged
bi-static scattering coefficient in the plane of incidence, (v) incidence. Rough-surface parameters h = λ,
lc = √

2λ, lt = λ/2, L = 8λ; incident angles θi = 20◦ and ϕi = 0◦; Spectral resolution �α = k/8. Truncation
order M = 21, M = 24 or M = 28; Number of realisationsNR = 297. Experimental data are taken in [22].
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approach, small perturbation method, small slope approximation) are inaccurate [24–25]. The
Monte-Carlo simulations based on the C method have been successful in predicting backscattering
enhancement.

5.4. The C-method and the boundary integral methods

The boundary integral method can be used for analysing the scattering problem by rough sur-
faces. In this case, the electric or magnetic field integral equation is converted into matrix
equations using the method of moments in the spatial domain [3]. If the surface sampling step
is λ/7, the sample number of the surface of length L = 8λ is 3136 and the size of matri-
ces to be treated is 6272. This size is given by the C method with a truncation order equal
to M = 28. For this example, the system sizes are similar for both methods. But, we cannot
conclude in terms of trade-off ‘accuracy versus computation time’. This conclusion should be
based on a serious numerical investigation that requires implementing both methods on the
same workstation with the same programming language and for a large number of configura-
tions, comparing the computation times with the same accuracy in results. But, the C-method is
based on the definition of the eigensolutions of the scattering problem. As a result, the curvi-
linear coordinate method is an accurate one. We think that it’s the main advantage by using the
C-method.

Nevertheless, what should be kept in mind is that the dominant computational cost for the C
method is the eigenvalue problem solution which is of the order of M3

s (For M = 16, the eigenvalue
problem solution requires 11 over 12 minutes total CPU time). The computational costs for the
boundary integral equation are the matrix fill time which is of the order of M2

s and the linear
system solution which ranges from O(M2

s ) for iterative algorithm applied to well conditioned
operators or to O(M3

s ) for direct matrix factorization methods [3]. Several classes of methods
have been proposed to reduce the CPU time. These methods enable us to obtain the field scattered
from surface of very large size [20, 21, 26–32]. Owing to computational costs, the C method in the
present form doesn not enable us to analyse the surfaces of very large sizes and the surfaces with
large transverse correlation length. This is a weak point of the C method. Moreover, numerical
simulations of rough surface scattering at near-grazing incidence requires very large surfaces
[33, 34]. The C-method in the present form isn’t suitable to analyse this particular scattering
problem.

In the next step of our work, we will propose to reduce the computational time by the imple-
mentation of the short-coupling-range approximation [26]. This approach has been successfully
implemented in the case of 1-D rough surfaces [35]. It amounts to represent a scattering surface
by several elementary surfaces of shorter size and leads to analyse the electromagnetic couplings
between the elementary cells.

6. Conclusion

In this paper, for the first time, the curvilinear coordinate method has been applied for analysing
2-D perfectly conducting random rough surfaces. The method has been numerically investigated
in the far-field zone. The numerical stability of bi-static coefficient is ensured and the accuracy on
power balance increases with the truncation order. The Monte Carlo technique has been applied
for estimating the bi-static scattering coefficient and the incoherent intensity from the results
over several realisations. The comparisons with published numerical and experimental data are
satisfactory in both co-polarised and cross-polarised components and allow the validity of our
computer code to be checked. Extension of the C method to dielectric rough 2-D surfaces is
currently under investigation.
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[6] R. Dusséaux and C. Baudier, Scattering of a plane wave by 1-dimensional dielectric rough surfaces –

study of the field in a nonorthogonal coordinate system, PIER 37 (2003), pp. 289–317.
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[35] K. Aı̈t Braham and R. Dusséaux, Analysis of the Scattering from Rough Surfaces with the C Method
and the Short-Coupling Range Approximation. Applied Computational Electromagnetics Society Con-
ference (ACES).Verona, Italy, March 19–24, 2007, pp. 1880–1886.


