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a b s t r a c t

The curvilinear coordinate method is an efficient theoretical tool for analysing rough surfaces. It consists
on solving Maxwell’s equations written in a nonorthogonal coordinate system. The C method leads to
eigenvalue systems and the scattered fields can be expanded as a linear combination of eigensolutions.
The boundary conditions allow the combination coefficients to be determined. The dominant computa-
tional cost for the C method is the eigenvalue problem solution which is of order of N3 where N is the size
of eigenvalue systems. In this paper, we propose a new approach based on the association of the C
method with the beam simulation method (BSM) in order to reduce the computational time. The BSM
is based on decomposing a large incident beam into narrower subbeams and then synthesizing the large
beam by coherent superposition. The adopted procedure consists of two stages. First, the surface fields
are obtained by the C method associated with each elementary beam illuminating smaller surfaces. Sec-
ond, the total surface field is deduced from a coherent superposition of elementary surface current den-
sities. The far-field and the scattering coefficients are derived from the Huygens principle applied to the
total surface fields. We confirm the efficiency and the validity of the approach and show that the BSM
applied with the C method allows a significant saving in computation time.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The curvilinear coordinate method, commonly called the C
method, is an efficient theoretical tool for analysing rough surfaces
[1–9]. It consists on solving Maxwell’s equations under their covar-
iant form written in a nonorthogonal coordinate system which fits
the surface profile. The C method leads to eigenvalue systems [1,2].
Then, the scattered fields can be expanded as a linear combination
of eigensolutions. The boundary conditions allow the combination
coefficients to be determined. The dominant computational cost
for the C method is the eigenvalue problem solution which is of or-
der of N3 where N is the size of the eigenvalue systems.

In a previous work, a new version of the C method based on the
short coupling range approximation (SCRA) has been presented
and implemented for analysing electromagnetic fields scattered
from rough surfaces illuminated by incident monochromatic plane
wave [8]. The short coupling range approximation shows that the
surface fields at a given point of a rough surface only depend on
the shape of the profile inside an interval centered at this point
and that has a width of one or two wavelengths of the incident
light [10,11]. The new version of the C method consists of two
stages. First, according to SCRA, the whole surface is represented

by several elementary ones. For each elementary surface, the sur-
face current densities are derived from the C method. Second, the
total surface field is deduced from a concatenation of elementary
surface current densities and the far-field and the bi-static scatter-
ing coefficients are derived from the Huygens principle applied to
the total surface fields. In Ref. [8], we have shown that the SCRA ap-
plied with the C method allows an important saving in computa-
tion time with respect to the C method alone.

In this paper, we propose an extension of this approach to the
beam simulation method (BSM) in order to reduce the computa-
tional time of the C method. The BSM is based on decomposing a
large incident beam into narrower subbeams and then synthesiz-
ing the large beam by coherent superposition [12,13]. The adopted
procedure also consists of two stages. First, the surface fields are
derived from the C method applied to each elementary beam illu-
minating smaller surfaces. Second, the total surface field is de-
duced from a coherent superposition of elementary surface
current densities and the far-field and the scattering coefficients
are derived from the Huygens principle applied to the total surface
fields. We confirm the efficiency and the validity of this new ap-
proach and show that BSM applied with the C method allows a sig-
nificant saving in time complexity and consequently in
computation time in serial context. The last section is devoted to
the parallelism analysis of our technique and brings to light that
it is well-suited to parallel computing.
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2. Scattering by random rough surfaces

2.1. Presentation of the problem

We consider a tapered plane wave Fi(x,y) with time dependence
expðjxtÞ impinging upon a one-dimensional rough surface with a
random height profile y = a(x). The surface separates the vacuum
(+) from a homogeneous lower medium (�) which can be a dielec-
tric material or perfect conductor. a(x) is a random function whose
values obey to a Gaussian probability density with zero mean value
and a root-mean-square height h. Its correlation function Caa(x) is
also Gaussian with a correlation length lc.

CaaðxÞ ¼ h2 exp � x2

l2
c

 !
ð1Þ

In our previous work [8], we considered a single harmonic plane
wave. Here, the plane wave is tapered so that the illuminated zone
can be confined to surface L:

Fiðx; yÞ ¼
1

2p

Z þ1

�1

bRiðaÞ expð�jaxÞ exp þjbðþÞðaÞy
� �

da ð2Þ

where

bRiðaÞ ¼
Z þ1

�1
Fiðx; y ¼ 0Þ expðþjaxÞdx

¼ F0 exp � b2

2
ða� aiÞ2

 !
ð3Þ

and

Fiðx; y ¼ 0Þ ¼ 1
2p

Z þ1

�1

bRiðaÞ expðþjaxÞda

¼ F0ffiffiffiffiffiffiffi
2p
p

b
exp � x2

2b2

� �
expð�jaixÞ ð4Þ

F0 is a constant amplitude and ai ¼ kðþÞ sin hi, the Gaussian beam
axis. b is the parameter that controls the tapering of the incident

wave. A Gaussian function exp � u2

2r2

� �
is well-described over the

range �3r 6 u 6 3r. So, we consider the length L of the illumi-
nated zone equal to 6b. bRiðaÞ is the amplitude associated with

the elementary wave function expð�jaxÞ exp þjbðþÞy
� �

. a and bðþÞ

are the constant propagations where

a2 þ bðþÞ
2 ¼ kðþÞ

2
and kðþÞ ¼ 2p

k
ð5Þ

k is the wavelength of the incident wave. For a Gaussian beam, we
consider that integration variable a varies from � 3

b þ ai to 3
b þ ai.

Both fundamental polarizations Ek and Hk are considered. In
case of Ek polarization, the electric vector is parallel to the Oz axis
and for Hk polarization, this is the case of the magnetic vector.

~E
ðEkÞ
i ðx; yÞ ¼ Fiðx; yÞ~uz

ZðþÞ~H
ðHkÞ
i ðx; yÞ ¼ Fiðx; yÞ~uz

ð6Þ

Z(+) is the intrinsic impedance of free space (ZðþÞ ¼ 120p). In the
upper medium (+), we note the total field

FðþÞðx; yÞ ¼ Fiðx; yÞ þ FðþÞs ðx; yÞ ð7Þ

and in the lower dielectric medium (�),

Fð�Þðx; yÞ ¼ Fð�Þs ðx; yÞ ð8Þ

The problem consists on working out the field Fð�Þs ðx; yÞ scat-
tered within the two media.

2.2. The Rayleigh representation of the scattered fields

The scattered field can be expressed by a Rayleigh expansion
[14] in the region out of the deformation ðy > max aðxÞ and
y < min aðxÞÞ. In case of Ek incident wave we have

~E
ðEk ;�Þ
s ðx; yÞ ¼ 1

2p

Z þ1

�1

bRðEk ;�ÞðaÞ exp �jbð�ÞðaÞy
� �

expð�jaxÞda~uz

Zð�Þ~H
ðEk ;�Þ
s ðx; yÞ ¼ 1

2p

Z þ1

�1

bRðEk ;�ÞðaÞ ~kð�Þs

kð�Þ
^~uz

 !
exp �jbð�ÞðaÞy

� �
� expð�jaxÞda

ð9Þ

where

~kð�Þs ¼ a~ux � bð�Þ~uy ð10Þ

a2 þ bð�Þ
2 ¼ kð�Þ

2
; Im bð�Þ < 0 ð11Þ

kð�Þ ¼ nð�ÞkðþÞ ð12Þ

Zð�Þ ¼ ZðþÞ

nð�Þ
ð13Þ

The symbol ^ designates the vector product. Z(�) is the dielectric
medium impedance and n(�), the optical refractive index. bRð�ÞðaÞ is
the scattering amplitude associated with the elementary wave

function expð�jaxÞ exp �jbð�ÞðaÞy
� �

. In the upper medium, if

a 6 kðþÞ
� �

then bðþÞðaÞ is a positive real. The associated wave is

an outgoing propagating wave. In the far-field zone, the Rayleigh
integral is reduced to the only contribution of these propagating
waves and the asymptotic field at an observation point Mðr; hÞ is gi-
ven as follows [15]:

~E
ðEk ;þÞ
s ðr;hÞ� bRðEk ;þÞ kðþÞ sinh

� �
coshexp �j

p
4

� �exp �jkðþÞr
� �
ffiffiffiffiffi
kr
p ~uz

ZðþÞ~H
ðEk ;þÞ
s ðr;hÞ��bRðEk ;þÞ kðþÞ sinh

� �
coshexp �j

p
4

� �exp �jkðþÞr
� �
ffiffiffiffiffi
kr
p ~uh

ð14Þ
~uh is the unit vector in the polar coordinate system. In order to ob-
tain the expression of fields in case of Hk polarization, we substitute
~E
ðEk ;�Þ
s by Zð�Þ~H

ðHk ;�Þ
s and Zð�Þ~H

ðEk ;�Þ
s by �~EðHk ;�Þs in Eqs. (9) and (14).

The bi-static scattering coefficient rðþÞðhÞ is defined from the
asymptotic field and represents the angular density of scattered
power in the radiation zone normalized with respect to the inci-
dent power Pi:

rðþÞðhÞ ¼ cos2 h

2ZðþÞPi

bRðþÞ kðþÞ sin h
� ���� ���2 ð15Þ

where

Pi ¼
1

4pZðþÞ

Z þ1

�1

bRiðaÞ
��� ���2bðþÞðaÞda ð16Þ

In the random rough surface scattering problem, the scattering
amplitude bRðþÞðaÞ is a random function. So, for a set of NR surface
profiles, we define an averaged bi-static scattering coefficient
hrðþÞðhÞi. The angular bracket h i stand for ensemble averaging.
The coherent intensity corresponds to the bi-static scattering coef-
ficient associated with the averaged scattering amplitude. The
incoherent intensity IðþÞf ðhÞ is defined as the difference between
the two preceding physical quantities

IðþÞf ðhÞ ¼
cos2 h

2ZðþÞPi

bRðþÞ kðþÞ sin h
� ���� ���2� 	

� bRðþÞ kðþÞ sin h
� �D E��� ���2� �

ð17Þ
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The Monte Carlo technique is applied to estimate the incoherent
intensity from the results over NR different realizations of the
profile.

3. Analysis with the curvilinear coordinate method and the
Huygens principle

The scattered field cannot be expressed by the Rayleigh expan-
sion inside the modulated zone [14]. In order to overcome this
problem, we can obtain an expression of fields that is valid over
the surface by solving Maxwell’s equations under their covariant
form in the translation coordinate system. The curvilinear coordi-
nate method gives the surface current densities and the Huy-
gens–Fresnel principle, the scattering amplitudes.

3.1. Coordinate system – covariant components of field

The translation system is obtained from the Cartesian one
ðx; y; zÞ [1].

x0 ¼ x

y0 ¼ y� aðxÞ
z0 ¼ z

8><>: ð18Þ

The limit surface a(x) is of equation y0 = 0 in the translation sys-
tem. The change from Cartesian components ðVx; Vy; VzÞ of vector ~V
to covariant components ðVx0 ; Vy0 ; Vz0 Þ is given by [1,16]

Vx0 ðx; y0Þ ¼ Vxðx; yÞ þ _aðxÞVyðx; yÞ
Vy0 ðx; y0Þ ¼ Vyðx; yÞ with _aðxÞ ¼ da

dx

Vz0 ðx; y0Þ ¼ Vzðx; yÞ

8><>: ð19Þ

Covariant components Vy0 ðx; y0Þ and Vz0 ðx; y0Þ become identified
with Cartesian components Vyðx; yÞ and Vzðx; yÞ where
y0 ¼ y� aðxÞ. Vx0 and Vz0 are parallel to coordinate surfaces
y0 ¼ y0, so the covariant components Ex0 , Hx0 , Ez0 and Hz0 are tangen-
tial to the rough surface. In a source-free medium, the Maxwell’s
equations and the constitutive equations written in the translation
system lead to the differential system (20) [2]:

j

kð�Þ
@Fð�Þðx; y0Þ

@y0
¼ Gð�Þðx; y0Þ � _aðxÞKð�Þðx; y0Þ

j

kð�Þ
@Gð�Þðx; y0Þ

@y0
¼ j

kð�Þ
@Kð�Þðx; y0Þ

@x
þ Fð�Þðx; y0Þ

1

jkð�Þ
@Fð�Þðx; y0Þ

@x
¼ � _aðxÞ Gð�Þðx; y0Þ � _aðxÞKð�Þðx; y0Þ

� �
þ Kð�Þðx; y0Þ

ð20Þ

System (20) is valid for the two types of polarization. For Ek
polarization, covariant components Fð�Þðx; y0Þ, Gð�Þðx; y0Þ and
Kð�Þðx; y0Þ are defined as follows:

FðEk ;�Þðx; y0Þ ¼ Eð�Þz0 ðx; y0Þ

GðEk ;�Þðx; y0Þ ¼ Zð�ÞHð�Þx0 ðx; y0Þ

KðEk ;�Þðx; y0Þ ¼ Zð�ÞHð�Þy0 ðx; y0Þ

ð21Þ

and, for Hk polarization, we have:

FðHk ;�Þðx; y0Þ ¼ Zð�ÞHð�Þz0 ðx; y0Þ

GðHk ;�Þðx; y0Þ ¼ �Eð�Þx0 ðx; y0Þ

KðHk ;�Þðx; y0Þ ¼ �Eð�Þy0 ðx; y0Þ

ð22Þ

After a Fourier transform, system (20) takes the form:

j

kð�Þ
@bF ð�Þða;y0Þ

@y0
¼ bGð�Þða;y0Þ � _̂aðaÞ � bK ð�Þða;y0Þ

j

kð�Þ
@bGð�Þða;y0Þ

@y0
¼ a

kð�Þ
bK ð�Þða;y0Þ þ bF ð�Þða;y0Þ

�a
kð�Þ

bF ð�Þða;y0Þ ¼ � _̂aðaÞ � bGð�Þða;y0Þ � _̂aðaÞ � bK ð�Þða;y0Þ� �
þ bK ð�Þða;y0Þ

ð23Þ
where _̂aðaÞ � bV ða; y0Þ is the convolution product of two functions
_̂aðaÞ and bV ða; y0Þ. bF ð�Þða; y0Þ, bGð�Þða; y0Þ, bK ð�Þða; y0Þ and _̂aðaÞ are the
Fourier transforms of functions Fð�Þðx; y0Þ, Gð�Þðx; y0Þ, Kð�Þðx; y0Þ and
_aðxÞ, respectively. In a second stage, convolution products are
approximated as follows:

_̂aðaÞ � bV ða; y0Þ ¼ 1
2p

Z þ1

�1
_̂aða� cÞbV ðc; y0Þdc

� Da
2p

Xp¼þ1
p¼�1

_̂aða� apÞbV pðy0Þ ð24Þ

where

ap ¼ pDa ð25Þ
andbV pðy0Þ ¼ bV ðc ¼ ap; y0Þ ð26Þ

Da is the spectral resolution. Finally, substituting expressions (24)
into system (23) and applying the point matching method at dis-
crete values a ¼ aq, we obtain:

j

kð�Þ
@~Fð�Þ

@y0
¼ ½ _A�½C�½að�Þ�~Fð�Þ þ ½C�~Gð�Þ

j

kð�Þ
@~Gð�Þ

@y0
¼ ð½I� � ½að�Þ�½C�½að�Þ�Þ~Fð�Þ þ ½að�Þ�½C�½ _A�~Gð�Þ

ð27Þ

where ½að�Þ� is a diagonal matrix with ap=kð�Þ along the diagonal, [I]
the identity matrix and ½ _A� the Toeplitz matrix generated by _̂aðaqÞ
such that its ðq;pÞ element is _̂aðaq � apÞ and

½C� ¼ ð½I� þ ½ _A�½ _A�Þ�1 ð28Þ

With a Mth-order truncated approximation, ½að�Þ�, [I], ½ _A� and [C]
are square matrices of dimension Ms where Ms ¼ 2M þ 1. The
upper vector ~Fð�Þ and the lower vector ~Gð�Þ have componentsbF ð�Þðap; y0Þ and bGð�Þðap; y0Þ where �M 6 p 6 þM. The elementary
solutions of (27) are defined as follows:

~Fð�Þn

~Gð�Þn

 !
¼

~f ð�Þn

~gð�Þn

 !
exp �jkð�Þrð�Þn y0

� �
ð29Þ

with

rð�Þn

~f ð�Þn

~gð�Þn

 !
¼

½ _A�½C�½að�Þ� ½C�
½I� � ½að�Þ�½C�½að�Þ�

 �

½að�Þ�½C�½ _A�

" #
~f ð�Þn

~gð�Þn

 !
ð30Þ

~f ð�Þn and ~gð�Þn represent the upper eigenvector and the lower eigen-
vector associated with the eigenvalue rð�Þn . We write f ð�Þn ðapÞ and
gð�Þn ðapÞ the components of vectors~f ð�Þn and~gð�Þn , respectively. System
(30) gives 2Ms eigensolutions. According to the sampling theorem
[6,7], the elementary wave functions bF ð�Þn ða; y0Þ and bGð�Þn ða; y0Þ can
be constructed from samples f ð�Þn ðapÞ and gð�Þn ðapÞ by the following
interpolations:

bF ð�Þn ða; y0Þ ¼
Xq¼þM

q¼�M

f ð�Þn ðaqÞsinc
p
Da
ða� aqÞ

� �
exp �jkð�Þrð�Þn y0

� �
bGð�Þn ða; y0Þ ¼

Xq¼þM

q¼�M

gð�Þn ðaqÞsinc
p
Da
ða� aqÞ

� �
exp �jkð�Þrð�Þn y0

� �
ð31Þ
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3.2. Surface fields with the C method

Elementary wave functions bF ð�Þn ða; y0Þ and bGð�Þn ða; y0Þ character-
ize an outgoing wave propagating with no attenuation if

Re �kð�Þrð�Þn

� �
> 0 and Im �kð�Þrð�Þn

� �
¼ 0. For an evanescent wave,

Im �kð�Þrð�Þn

� �
< 0. For each medium, it is observed numerically

that among the 2Ms eigenfunctions, Ms of them correspond to out-
going waves and as many to incoming waves. The covariant com-
ponents of the scattered fields are defined by the following Fourier
transforms:

bF ð�Þs ða; y0Þ ¼
X2Mþ1

n¼1

Að�Þn
bF ð�Þn ða; y0Þ

bGð�Þs ða; y0Þ ¼
X2Mþ1

n¼1

Að�Þn
bGð�Þn ða; y0Þ

ð32Þ

According to (31) and (32), we obtain in the spatial domain:

Fð�Þs ðx; y0Þ ¼
P2Mþ1

n¼1
Að�Þn Fð�Þn ðx; y0Þ

Gð�Þs ðx; y0Þ ¼
P2Mþ1

n¼1
Að�Þn Gð�Þn ðx; y0Þ

for jxj 6 2p
Da

ð33aÞ

Fð�Þs ðx; y0Þ ¼ Gð�Þs ðx; y0Þ ¼ 0 for jxj > 2p
Da

ð33bÞ

The surface fields are given by functions Fð�Þs ðx; y0Þ and Gð�Þs ðx; y0Þ
at y0 ¼ 0. The combination coefficients Að�Þn are found by solving the
boundary conditions according to the type of the lower medium
(perfect conductor or dielectric medium) and the polarization of
the impinging wave [6].

3.3. Scattering amplitudes derived from the C method and the Huygens
principle

As shown in Ref. [8], in the upper medium, the far-field angular
dependences are derived from the surfaces fields Fð�Þs ðx; y0 ¼ 0Þ and
Gð�Þs ðx; y0 ¼ 0Þ given by the C method.

bRðp;þÞ kðþÞ sin h
� �

cos h ¼ 1
2

Z þp=Da

�p=Da
ðcos h� _aðxÞ sin hÞFðp;þÞs ðx; y0 ¼ 0Þ
h

þGðp;þÞs ðx; y0 ¼ 0Þ
i
� exp jkðþÞ sin hx

� �
exp jkðþÞ cos haðxÞ

� �
dx

ð34Þ
Letter p designates the polarization (p ¼ Ek or p ¼ Hk). The for-

mula (34) is obtained from the Huygens principle associated with
the Weyl representation of the zeroth-order Hankel function and
the Rayleigh expansion [8]. The curvilinear coordinate method
gives the surface fields and the far-field angular dependence is cal-
culated using Eq. (34). The bi-scattering coefficient is given by Eq.
(15).

4. The beam simulation method (BSM)

The BSM consists on decomposing a large incident beam. So,
function Fiðx; y ¼ 0Þ is decomposed as follows:

Fiðx; y ¼ 0Þ ¼
XNb�1

q¼1�Nb

Di;qFi;qðx; y ¼ 0Þ ð35Þ

where

Di;q ¼
F0ffiffiffiffiffiffiffi
2p
p

b
exp �

x2
q

2b2

 !
ð36Þ

and

Fi;qðx; y ¼ 0Þ ¼ expð�jaixÞtri
x� xq

2c

� �
ð37Þ

Local function tri x�xq

2c


 �
is one triangle of unit amplitude, of

width 2c and centered on xq ¼ qc:

tri
x� xq

2c

� �
¼

1 for jx� xqj < c

0 elsewhere

�
ð38Þ

The incident beam is represented by 2Nb � 1 elementary beams
Fi;qðx; yÞ illuminating the plane y = 0 on a length L=Nb where
L ¼ 2Nbc. In the spectral domain, elementary beams are repre-
sented by the Fourier transform of function Fi;qðxÞ:

bRi;qðaÞ ¼ FT Fi;qðx; y ¼ 0Þ

 �

¼ c sinc2 cða� aiÞ
2

� �
exp þjða� aiÞxq


 �
ð39Þ

where sincðaÞ ¼ sinðaÞ
a . For the numerical implementation, we only

consider the main lobe of function sinc2, where the constant prop-
agation a varies from ai � 2p

c to ai þ 2p
c . Substituting (39) in (2), the

tapered plane wave Fiðx; yÞ is given as follows:

Fiðx; yÞ ¼
Xq¼Nb�1

q¼1�Nb

Di;qFi;qðx; yÞ ð40Þ

where

Fi;qðx; yÞ ¼
1

2p

Z þ1

�1

bRi;qðaÞ expð�jaxÞ exp þjbðþÞðaÞy
� �

da ð41Þ

The curves of Fig. 1 represent the Fourier transforms of the ori-
ginal and synthesized beams in the plane y = 0 for a configuration
characterized by ai ¼ 30	, L ¼ 40k, Nb ¼ 4 and c ¼ 10k. As shown in
Fig. 1, the beam synthesis method is efficient.

The BSM is based on decomposing a large incident beam into
narrower subbeams and then synthesizing the large beam by
coherent superposition. In this approach, the scattering of waves
by the rough surface with each small beam is independent and is
without coherent wave interaction. So, the C method is used to
perform the surface fields Fð�Þs;q ðx0; y0 ¼ 0Þ and Gð�Þs;q ðx0; y0 ¼ 0Þ associ-
ated with each elementary profile aqðxÞ of length 2c þ 2lt with:

aqðxÞ ¼ aðxÞ for jx� xqj 6 c þ lt

aqðxÞ ¼ 0 elsewhere
ð42Þ

The illuminated zone of elementary profile aqðxÞ is represented
by interval xq � c 6 x 6 xq þ c. So, elementary profile aqðxÞ is illu-
minated by an elementary narrow beam over a length 2c. But, in

Fig. 1. Original beam and synthesized beam. Simulation parameters: L ¼ 40k,
Nb ¼ 4 and hi ¼ 30	 .
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order to analyze the electromagnetic coupling between the illumi-
nated zone and the one that is not illuminated, we consider ele-
mentary profiles aqðxÞ defined over xq � c � lt 6 x 6 xq þ c þ lt

where length lt defines a transition zone that is not directly illumi-
nated by the subbeam. According to the short coupling range
approximation, this transition zone has a width of one or two
wavelengths of the incident light [10,11]. As shown in Fig. 2, two
consecutive elementary profiles present a common zone having a
length c þ 2lt but they are illuminated by different narrow beams.

The total surface field is deduced from a coherent superposition
of elementary surface current densities as follows:

Fð�Þs ðx; y0 ¼ 0Þ ¼
Xq¼Nb�1

q¼1�Nb

Di;qFð�Þs;q ðx; y0 ¼ 0Þ

Gð�Þs ðx; y0 ¼ 0Þ ¼
Xq¼Nb�1

q¼1�Nb

Di;qGð�Þs;q ðx; y0 ¼ 0Þ
ð43Þ

where Fð�Þs;q ðx; y0 ¼ 0Þ ¼ Gð�Þs;q ðx; y0 ¼ 0Þ ¼ 0 for jx� xqj > c þ lt .
In final, the scattered amplitude is calculated using the total

surface fields (43) into Eq. (34) and the bi-static scattering coeffi-
cient rðþÞðhÞ is given by (15).

5. Numerical results

5.1. Numerical parameters

The spectral resolution Da and the truncation order M are the
two numerical parameters of the C method. The spectral resolution
is inversely proportional to the deformation length and the trunca-
tion order gives the number of unknowns. The analysis of a rough
dielectric surface requires the solution of two 2Ms-dimensional
eigenvalue systems and for each polarization, the solution of a lin-
ear 2Ms-dimensional system when dealing with the boundary con-
ditions. The dominant computational cost for the C method is the
eigenvalue problem solution which is of the order of N3 (where
N ¼ 2Ms and Ms ¼ 2M þ 1).

In the spectral domain, the Mth-order truncation removes the
highest spatial frequencies of the field components and of the asso-
ciated eigenwaves. Indeed, integration variable a varies within
interval ½�amax;þamax� where amax ¼ MDa. The proportion of eva-
nescent waves becomes larger when amax increases, leading to a
better description of the coupling phenomena and a better accu-
racy on results. The higher spatial frequency amax increases with
the increasing of the root-mean-square slope [3,6].

The accuracy on results depends on the value of the highest spa-
tial frequency amax. In order to compare the C method and the C
method associated with the BSM, we should give the same value
of amax for both approaches and the same spatial resolution Dx. If
we consider two transition zones, the length of the profile treated
by the C method alone is Lþ 2lt . The BSM applied with the C meth-
od leads to 2Nb � 1 eigenvalue systems and treats profiles having a
length equal to L

Nb
þ 2lt . So, the time complexity required with re-

spect to the C method alone is divided by the theoretical factor
qth given by:

qth �
N3

b

2Nb � 1
Lþ 2lt

Lþ 2Nblt

� �3

ð44Þ

This saving in time complexity is only due to our physical ap-
proach which consists in using BSM in conjunction with the C
method rather than this last one alone. (The time complexity rep-
resents the number of basic operations of a method or algorithm.)
While, the time complexity is independent of the hardware sup-
port and the programming language, the computation time which
is measured on a given computer depends on these factors. For the
simulations presented in this paper, the curvilinear coordinate
method and the beam simulation method have been implemented
in Matlab language on Xeon-Pentium-3.4 GHz-bi-processor PC
with 4 GB RAM. As in this paper our main goal is to valid the pro-
posed approach we have chosen Matlab language and a single
computer like programming environment leading to a relatively
limited number of realizations. In order to point out the efficiency
and stability of our approach for several thousands of realizations,
we target in a future work to implement the proposed approach in
a high level language (FORTRAN or C++) for a large-scale distrib-
uted environment.

5.2. Validation of results

We consider a single realization with a length L ¼ 48k and illu-
minated under the incidence hi ¼ 20	. The rough surface rms
height is h ¼ 0:4k, the correlation length is lc ¼ k. The optical
refractive index is fixed at n� ¼ 2:8� 0:25j. We choose Nb ¼ 6.
The Gaussian beam is decomposed into 11 elementary beams illu-
minating smaller surfaces of length 8k. Fig. 3 shows the real part of
the current surface density Gð�Þs ðx; y0 ¼ 0Þ for the Ek-polarized con-
figuration and Fð�Þs ðx; y0 ¼ 0Þ for the Hk-polarized case, respectively.
Comparison between surface currents derived from both versions
of the C method is good in the Ek polarization and satisfactory in

Fig. 2. Elementary narrow beams in the plane y ¼ 0. Simulation parameters:
L ¼ 48k, Nb ¼ 6, hi ¼ 0	 , c ¼ 4k and lt ¼ 2k.

Fig. 3. Real part of surface currents for one realization. Simulation parameters:
L ¼ 48k, Nb ¼ 6, h ¼ 0:4k, lc ¼ k, lt ¼ 3k=2, n� ¼ 2:8� 0:25j, hi ¼ 20	 , MC ¼ 240,
MC[BSM ¼ 51 and amax ¼ 4:7kþ .
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the Hk case. The CPU time required for solution of eigenvalue sys-
tems in this example is 13 s for the BSM and 121 s for the C method
alone, a factor-of-9.3 difference. The theoretical factor qth of reduc-
tion is equal to 9.1. The total CPU time for the surface fields is
17.2 s for the BSM and 129 s for the C method alone, a factor-of-
7.5 difference.

Figs. 4 and 5 give the bi-static coefficient for the same realiza-
tion. Comparison is conclusive. Nevertheless, we can observe light
differences on results that we can explain by an analysis of wave
interactions. The C method analyzes all electromagnetic coupling
while the BSM does not take into account some wave coherent
interactions insofar as the scattering of waves by the rough surface
with each elementary beam is independent.

Fig. 6 gives the incoherent intensity IðþÞf obtained by the new
version of the C method for a glass interface (n� ¼ 1:5) illuminated
by a Hk-polarized incident plane wave at hi ¼ 40	. Results are esti-
mated over 300 realizations. The rough surface rms height is
h ¼ 0:2k and the correlation length is lc ¼ 0:5k. We choose Nb ¼ 6
and the Gaussian beam is decomposed into 11 elementary beams
illuminating smaller surfaces of length 8k. The length of transition
zones is lt ¼ 3k=2. We compare results with the scattering pattern
given by a rigorous method based on solutions of surface integral
equations [17]. Comparison is conclusive and confirms the validity

of BSM approximation for the rough surface under consideration.
When increasing the rms slope given by h _a ¼

ffiffiffi
2
p

h=l, the radiation
is more pronounced in the backscattering region and decreases
in the forward direction. For the surface under study, the enhanced
backscattering phenomenon is observed, as seen in Fig. 6. The
Monte–Carlo simulations based on the new version of the C meth-
od have been successful in predicting backscattering enhancement.

6. Parallelism analysis

We have seen that the computation of surface fields by using
the C method in conjunction with BSM allows reducing the com-
puting time of the C method. In order to study very large surfaces,
an additional option is to exploit the potential parallelism of these
methods. Indeed, parallel computing operates on the principle that
large problems can be divided into smaller ones, which can be
solved in parallel. The good management of the communication
and synchronization between these subtasks allows obtaining
good parallel program performances such as substantial gain of
execution time. To parallelize an algorithm we have to focus on
its kernel which is the part of the algorithm which contains most
of calculation.

The analysis of a rough surface with the C method requires the
solution of two N-order eigenproblems. These problems constitute
the kernel of the C method. We have seen that with N large, the
proportion of evanescent waves becomes larger leading to a better
description of the coupling phenomena and a better accuracy on
results. We need to compute all eigenvalues of a large and sparse
matrix. The most currently used method allowing this computa-
tion is QR algorithm which the computation cost is of order N3

[18]. In order to improve the performances of the QR algorithm,
we can parallelize it. Nevertheless, the exploitation of the parallel-
ism of this algorithm is a delicate task. Indeed, in each of iteration
of QR only two rows and two columns of the matrix participate to
computation imposing a parallel algorithm with a small degree of
parallelism. The reduction in the computation time cannot be
substantial.

The C method associated with the beam simulation method
(BSM) is based on decomposing a large incident beam into narrower
subbeams and then synthesizing the large beam by coherent super-
position. The corresponding computation process consists of two
main steps. At first, the curvilinear coordinate method determines

Fig. 4. Bi-static scattering coefficient for one realization under Ek polarization. The
parameters are those of Fig. 3.

Fig. 5. Bi-static scattering coefficient for one realization under Hk polarization. The
parameters are those of Fig. 3.
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Fig. 6. Incoherent intensity for a glass interface illuminated by a Hk-polarized
incident plane wave. Simulation parameters: L ¼ 48k, Nb ¼ 6, h ¼ k=5, lc ¼ k=2,
lt ¼ 3k=2, n� ¼ 3=2, hi ¼ 40	 , MC[BSM ¼ 51 and amax ¼ 4:7kþ . Results of the integral
method are taken in Ref. [17].
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the surface fields for each elementary beam illuminating small sur-
faces. Second, the total surface field is computed by making use of a
coherent superposition of elementary surface current densities.
Then, the far-field and the scattering coefficients are derived from
the Huygens principle applied to the total surface fields. The kernel
of this computing process is its first step. That means that the dom-
inant part of the algorithm, in point of view of computation, is the
solving of a number of eigenproblems of small or moderate size. A
combination of the solution of these problems will determine the to-
tal surface fields. This approach is particularly well adapted to large-
scale parallel and distributed architectures. Indeed, in the context of
a distributed system comprising a network of machines, each of the
problems could be solved on a machine whose architecture can be
single or multiple processors. The communication of the intermedi-
ary results between these machines will then form the solution asso-
ciated with the total surface fields. The C method associated with
BSM has a significant degree of coarse grain parallelism and requires
little communication. In addition, the fine grain parallelism of each
small or moderate-size eigenproblem could also be exploited. These
features offer, by reducing dramatically the computation time, the
possibility of studying of very large surface fields by using the C
method in conjunction with BSM in a parallel computing context.

7. Conclusion

In this paper, a new version of the C method based on the beam
simulation method has been presented and implemented for ana-

lysing the electromagnetic field scattered from a one-dimensional
random surface. We have shown the efficiency and the validity of
BSM for penetrable media in both fundamental polarizations. The
BSM applied with the C method allows the analysis of large sur-
faces and an important saving in computation time with respect
to the C method alone. Moreover, we have seen that this approach
is particularly well-suited to large-scale distributed systems.
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